Detecting epileptic seizures in long-term human EEG: a new approach to automatic online and real-time detection and classification of polymorphic seizure patterns.

نویسندگان

  • Ralph Meier
  • Heike Dittrich
  • Andreas Schulze-Bonhage
  • Ad Aertsen
چکیده

Epileptic seizures can cause a variety of temporary changes in perception and behavior. In the human EEG they are reflected by multiple ictal patterns, where epileptic seizures typically become apparent as characteristic, usually rhythmic signals, often coinciding with or even preceding the earliest observable changes in behavior. Their detection at the earliest observable onset of ictal patterns in the EEG can, thus, be used to start more-detailed diagnostic procedures during seizures and to differentiate epileptic seizures from other conditions with seizure-like symptoms. Recently, warning and intervention systems triggered by the detection of ictal EEG patterns have attracted increasing interest. Since the workload involved in the detection of seizures by human experts is quite formidable, several attempts have been made to develop automatic seizure detection systems. So far, however, none of these found widespread application. Here, we present a novel procedure for generic, online, and real-time automatic detection of multimorphologic ictal-patterns in the human long-term EEG and its validation in continuous, routine clinical EEG recordings from 57 patients with a duration of approximately 43 hours and additional 1,360 hours of seizure-free EEG data for the estimation of the false alarm rates. We analyzed 91 seizures (37 focal, 54 secondarily generalized) representing the six most common ictal morphologies (alpha, beta, theta, and delta- rhythmic activity, amplitude depression, and polyspikes). We found that taking the seizure morphology into account plays a crucial role in increasing the detection performance of the system. Moreover, besides enabling a reliable (mean false alarm rate<0.5/h, for specific ictal morphologies<0.25/h), early and accurate detection (average correct detection rate>96%) within the first few seconds of ictal patterns in the EEG, this procedure facilitates the automatic categorization of the prevalent seizure morphologies without the necessity to adapt the proposed system to specific patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

P81: Detection of Epileptic Seizures Using EEG Signal Processing

Epilepsy is the most common brain diseases that cause many problems in the daily life of the patient. In most attempts to automatic detection, the attack used an EEG. In this paper, The complete data set consists of five sets recorded from normal and epileptic patients. Each set containing 100 single-channel EEG segments. Here we used first and last sets (A and E). Set A consisted of segments r...

متن کامل

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

Online analysis of local field potentials for seizure detection in freely moving rats

Objective(s): Seizure detection during online recording of electrophysiological parameters is very important in epileptic patients. In the present study, online analysis of field potential recordings was used for detecting spontaneous seizures in epileptic animals.Materials and Methods: Epilepsy was induced in rats by pilocarpine injecti...

متن کامل

Prediction of Epileptic Seizures in Patients with Temporal Lobe Epilepsy (TLE) based on Cepstrum analysis and AR model of EEG signal

Epilepsy is a chronic disorder of brain function caused by abnormal and excessive electrical neurons discharge in the brain. Seizures cause disturbances in consciousness that occur without prior notice, so their prediction ability, based on EEG data, can reduce stress and improve quality of life. An epileptic patient EEG data consists of five parts: Ictal, Inter-Ictal, pre-Ictal, Post-Ictal, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 2008